Embedded DRAM (eDRAM) Power-Energy Estimation Using Signal Swing-Based Analytical Model

Yong-Ha PARK†, Jeonghoon KOOK†, and Hoi-Jun YOO†, Nonmembers

SUMMARY Embedded-DRAM (eDRAM) power-energy estimation model is proposed for system-on-a-chip (SOC) applications. The main feature is the signal swing based analytic (SSBA) model, which improves the accuracy of the conventional SRAM power-energy models. The power-energy estimation using SSBA model shows 95% accuracy compared with the transistor level power simulation for three fabricated eDRAMs. The SSBA model combined with the high-level simulator provides fast and accurate system level power-energy estimation of eDRAM.

key words: eDRAM, power estimation

1. Introduction

Various embedded DRAM macros have been presented for the system-on-a-chip (SoC) applications as deep sub-micron technology is matured [1]–[6]. Their random access cycle is reduced to the value compatible with that of the low power SRAM [1]–[4]. Their wide I/O interface enables high bandwidth over several GB/s on a single chip [5], [6]. However, the researches for memory power-energy estimation have been restricted to cache memory or SRAM, which have significant impacts on the power consumption of overall memory system [7], [8]. In off-chip design, the power-energy consumption of DRAM could be ignored because off-chip I/O interconnection consumes more one or two orders of magnitude power-energy than standalone DRAM itself [8]. In SoC design, the situation is changed. Power consumption by on-chip interconnection is reduced to the same order of that of eDRAM because of the tremendous reduction on on-chip I/O capacitance. In order to obtain the power-energy efficient eDRAM architecture in early design phase, a fast-accurate eDRAM power analysis is essential especially for the battery driven applications.

However, the previous SRAM models suffer from poor accuracy when they are applied to eDRAMs because of the following critical drawbacks. An analytic power-energy SRAM model suffers from the estimation error because of inaccurate model of analog signals [7]. The mixed approach combining the analytical model for digital signal and the simulation model for analog signal reduces percentage error compared with the complete analytical model [8]. But detail circuit simulation and handcraft physical layout for more precise result causes a long verification time and it also has percentage error ranged from 1% to 32% according to what kinds of analog scheme are applied for high-speed or energy efficient operation [8]. In DRAM operation, analog signal are more widely used than in SRAM operation in order to achieve high-speed, low power and noise margin; for example, various pre-charge voltage levels, small swing operation, differential signaling and equalization scheme. This means that the trade-off between estimation time and accuracy causes more serious problem for early power-energy estimation than that of SRAM. In this letter, the simple-accurate eDRAM power-energy model, based on the signal swing characteristics, is presented and verified with the transistor level power simulation results of three fabricated eDRAMs, which have their own special signal characteristics.

2. Signal Swing Based Analytical (SSBA) eDRAM Power-Energy Model

2.1 Switching Current Ratio

Two current flows of load capacitance current (IC) and switching current (IS) are engaged in MOS power dissipation when the voltage level of the load capacitance is charged or discharged as shown in Fig. 1. IC is controlled by capacitor terminal voltage depending on the time constant. Basic energy calculation shows that the power supply of VCC provides the energy amount of CV^2 when IC charges the load capacitance as shown in Fig. 1(a) and 0 when IC discharges it as shown in Fig. 1(b), respectively.

Energy consumption by IS is transformed into additional energy consumption by the equivalent load capacitance of αCL as shown in Figs. 1(c) and (d). This is because the switching current controlled by the channel width of driving transistors is proportional to the load capacitance when the slew rate at input gate terminal of driving transistors remains to the constant value. The coefficient of α is obtained from the slope of energy difference between EIC+IS and EIC for selected capacitance values (or (EIC+IS – EIC)/ΔCL). Energy consumption of EIC+IS, which is supplied from VCC through both IC and IS, is obtained from SPICE simulation. Energy consumption of EIC, which is supplied...
from V_{CC} through I_C only, is obtained from analytical calculation. This transform simplifies the switching current modeling procedure for various buffering strategies.

2.2 Signal Swing Ratio

When the voltage level is switched between $a \cdot V_{CC}$ and GND or between $(1-a) \cdot V_{CC}$ and V_{CC} shown Figs. 2(a) and (b), the total energy amount provided from the power supply is $a^2 \cdot CV^2_{CC}$ or $a \cdot CV^2_{CC}$, respectively. Where ‘a’ is smaller than 1 in the case of small swing and equal to 1 in the case of full V_{CC} swing.

When the signal is discharged from the initial voltage level as shown in Figs. 2(d) and (e), the energy amount provided from the power supply is zero. This is because the energy stored in the capacitance is dissipated either in the distributed parasitic resistance R or in other power supply. The energy amount of $a^2 \cdot CV^2_{CC}$ and $a \cdot CV^2_{CC}$ is provided from the power supply only when the signals are charged from the initial voltage level as shown in Figs. 2(c) and (f), respectively. Some of the energy provided from the power supply is dissipated in the distributed parasitic R. The other of them is stored in the load capacitance, C, and dissipated through R if the load capacitance is discharged. However, in the digital signal with full V_{CC} swing, the energy amount provided from the power supply is always CV^2_{CC} since $a = 1$ as it is known in the conventional models in [7]–[9].

In DRAM design, differential signals with the same pre-charged voltage level are frequently used as shown in Fig. 3. Their energy amount provided from the power supply is summarized according to the pre-charged voltage level as shown in Figs. 3(a) and (b), assumed that each signal drives the same load capacitance C. When the differential signals pre-charged with the voltage level of half V_{CC} are evaluated to GND or V_{CC} and they return to the initial voltage of half V_{CC} like Fig. 3(a), the energy amount provided from the power supply is $0.75CV^2_{CC}$. If the charge-recycle is utilized by the equalization technique, this value is reduced to $0.5CV^2_{CC}$ because two same capacitances storing the opposite voltage level of V_{CC} and GND are naturally equalized to half V_{CC} without any energy supply from the power supply. When the only one of the differential signals, pre-charged with the voltage level of V_{CC}, is discharged to arbitrary voltage level and returns to the initial voltage level of V_{CC} (the remind signal is maintained to the voltage level of V_{CC}) like Fig. 3(b), the energy amount from power supply is always $a \cdot CV^2_{CC}$, regardless of $0 < a \leq 1$, even with equalization. This is because the charge-recycle can reduce the signal swing to half but the load capacitance to be driven to the V_{CC} level increases to a double.
2.3 Signal Swing Based Analytical Model

Overall eDRAM power-energy consumption is dominantly determined by power-energy consumption of the large capacitive load similar to the previous SRAM power-energy models [7]–[9]. This is because about 85% of DRAM power-energy is dissipated by the capacitance loads during the operation of word line (WL), high voltage supply line (RX), bit line (BL), sensing-restoring line (SRTO), data bus line (DB) and I/O line (IO) as shown in Fig.4 [10]. A timing control signal or combinational logic consumes only less than 15% of total energy consumption, which can be easily estimated by estimation methods in [9],[10]. In this letter, the general eDRAM architecture as shown in Fig.4 is considered for the SSBA power-energy model. Each bank is assumed to contain M-BL pairs, M-SAs, K-subword drivers, L-DB lines pairs, and L-I/Os interface with other embedded components. Equations (1a)–(1d) summarize the SSBA eDRAM power-energy models of WL, BL, DB, and IO line. Each capacitance component includes its own switching current ratio of α used in each MOS driver as described in Sect.2.1. S_{BL}, $S_{DB \cdot R}$, $S_{DB \cdot W}$ and S_{IO} are the signal swing coefficient for each swing characteristics as described in Sect.2.2. Here, σ_X is the average bit update ratio between the previous data and the currently accessed data for the corresponding signal. Energy consumption by each signal is obtained from the multiple of corresponding C, S, σ, and supply voltage (V) as shown in Eq.(1).

Power-energy consumption by the BLSA isolation logic (C_{ISO}) is additionally considered if the shared BLSA structure is used as described in Eq.(1b). DB model should be separated for read and write operation as described in Eqs.(1c-1) and (1c-2), respectively. This is because most DRAMs adopt the small DB swing for the fast read operation while they use full swing for the write operation in order to overwrite data latched at BLSA. In DB write model, additional BL swing should be included as described in the last term of Eq.(1c-2), $\sigma_{BL}L C_{BL} V_{CC}^2$, because BL pairs selected by column address show full V_{CC} swing, if the written data is different with the previous data latched at BLSA.

$$E_{WL} = (C_{WL} + C_{RX}) \cdot V_{PP}^2$$ \hspace{1cm} (1a)

$$E_{BL} = S_{BL} M (C_{BL} + C_{SRTO}) V_{CC}^2 + C_{ISO} V_{ISO}^2$$ \hspace{1cm} (1b)

$$E_{DB \cdot R} = L \cdot S_{DB \cdot R} C_{DB} V_{CC}^2$$ \hspace{1cm} (1c-1)

$$E_{DB \cdot W} = L \cdot S_{DB \cdot W} C_{DB} V_{CC}^2 + \sigma_{BL} L \cdot C_{BL} V_{CC}^2$$ \hspace{1cm} (1c-2)

$$E_{IO} = \sigma_{IO} L \cdot S_{IO} C_{IO} V_{CC}^2$$ \hspace{1cm} (1d)

3. Verifications and Discussions

The estimation results obtained from the SSBA power-energy model is compared with the transistor level simulation results of three fabricated eDRAMs. Each design utilizes different signal swing, circuit and process
Table 1 Design characteristics used in verification.

<table>
<thead>
<tr>
<th>Process</th>
<th>Power (Vcc/Vth)</th>
<th>BL Swing</th>
<th>DB Swing</th>
<th>Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.35µm EML</td>
<td>3.3/5.0</td>
<td>Direct + CC SA</td>
<td>0.5Vcc</td>
</tr>
<tr>
<td>B</td>
<td>0.18µm EML</td>
<td>2.2/4.0</td>
<td>CC SA</td>
<td>Vcc</td>
</tr>
<tr>
<td>C</td>
<td>0.16µm DRAM</td>
<td>2.0/3.3</td>
<td>SBW Scheme</td>
<td>0.5Vcc</td>
</tr>
</tbody>
</table>

(*RMW: Read-Modify-Write, **R/W: Read or Write)

Fig. 5 The comparison of power consumption between SSBA model and transistor level simulation results.

For system level power-energy estimation, the proposed SSBA model cooperates with the conventional high level system simulation environment as shown in Fig. 6. Overall eDRAM power-energy consumption is obtained from the combination of SSBA model and memory access statistics such as the number of row activations (N_{ROW}), the number of column activations (N_{COLR} for read and N_{COLW} for write) and bit update ratio (σ) as shown in Fig. 6. This approach enables high-accurate system level power-energy estimation to be achieved two or three orders of faster than the transistor level power-energy verification.

4. Conclusion

The signal swing-based analytical (SSBA) eDRAM power-energy model achieves the estimation accuracy about 95%. This is because the SSBA model exactly estimates their special analog behaviors. The SSBA model combined with the high-level simulator provides a fast and accurate system level power-energy estimation of eDRAM.

References

